Publications

1
Khuat LT, Le CT, Pai C-CS, et al. Obesity induces gut microbiota alterations and augments acute graft-versus-host disease after allogeneic stem cell transplantation. Sci Transl Med 2020;12. http://doi.org/10.1126/scitranslmed.aay7713
1
Ehrlich AM, Pacheco AR, Henrick BM, et al. Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiol 2020;20:357. http://doi.org/10.1186/s12866-020-02023-y
1
Lee S, Knotts TA, Goodson ML, et al. Metabolic Responses to Butyrate Supplementation in LF- and HF-Fed Mice Are Cohort-Dependent and Associated with Changes in Composition and Function of the Gut Microbiota. Nutrients 2020;12. http://doi.org/10.3390/nu12113524
1
Huang K-P, Raybould HE. Estrogen and gut satiety hormones in vagus-hindbrain axis. Peptides 2020;133:170389. http://doi.org/10.1016/j.peptides.2020.170389
1
Huang K-P, Goodson ML, Vang W, et al. Leptin signaling in vagal afferent neurons supports the absorption and storage of nutrients from high-fat diet. Int J Obes (Lond) Published Online First: 11 September 2020. http://doi.org/10.1038/s41366-020-00678-1
1
Qualls-Creekmore E, Marlatt KL, Aarts E, et al. What Should I Eat and Why? The Environmental, Genetic, and Behavioral Determinants of Food Choice: Summary from a Pennington Scientific Symposium. Obesity (Silver Spring) 2020;28:1386–96. http://doi.org/10.1002/oby.22806
1
Lee S, Goodson M, Vang W, et al. 2’-fucosyllactose Supplementation Improves Gut-Brain Signaling and Diet-Induced Obese Phenotype and Changes the Gut Microbiota in High Fat-Fed Mice. Nutrients 2020;12. http://doi.org/10.3390/nu12041003
1
Huang K-P, Ronveaux CC, Knotts TA, et al. Sex differences in response to short-term high fat diet in mice. Physiol Behav 2020;221:112894. http://doi.org/10.1016/j.physbeh.2020.112894
1
Lee SJ, Krieger J-P, Vergara M, et al. Blunted Vagal Cocaine- and Amphetamine-Regulated Transcript Promotes Hyperphagia and Weight Gain. Cell Rep 2020;30:2028-2039.e4. http://doi.org/10.1016/j.celrep.2020.01.045
1
Huang K-P, Ronveaux CC, de Lartigue G, et al. Deletion of leptin receptors in vagal afferent neurons disrupts estrogen signaling, body weight, food intake and hormonal controls of feeding in female mice. American Journal of Physiology-Endocrinology and Metabolism 2019;316:E568–77. http://doi.org/10.1152/ajpendo.00296.2018
1
Guerville M, Hamilton MK, Ronveaux CC, et al. Chronic refined low-fat diet consumption reduces cholecystokinin satiation in rats. Eur J Nutr 2019;58:2497–510. http://doi.org/10.1007/s00394-018-1802-2
1
Garas LC, Hamilton MK, Dawson MW, et al. Lysozyme-rich milk mitigates effects of malnutrition in a pig model of malnutrition and infection. Br J Nutr 2018;120:1131–48. http://doi.org/10.1017/S0007114518002507
1
Hamilton MK, Ronveaux CC, Rust BM, et al. Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice. Am J Physiol Gastrointest Liver Physiol 2017;312:G474–87. http://doi.org/10.1152/ajpgi.00427.2016
1
Boudry G, Hamilton MK, Chichlowski M, et al. Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice. J Dairy Sci 2017;100:2471–81. http://doi.org/10.3168/jds.2016-11890
1
Ilkiw JE, Nelson RW, Watson JL, et al. Curricular Revision and Reform: The Process, What Was Important, and Lessons Learned. J Vet Med Educ 2017;44:480–9. http://doi.org/10.3138/jvme.0316-068R
1
Moran-Ramos S, He X, Chin EL, et al. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats. PLoS One 2017;12:e0171672. http://doi.org/10.1371/journal.pone.0171672
1
Hamilton MK, Raybould HE. Bugs, guts and brains, and the regulation of food intake and body weight. Int J Obes Suppl 2016;6:S8–14. http://doi.org/10.1038/ijosup.2016.3
1
Garas LC, Feltrin C, Hamilton MK, et al. Milk with and without lactoferrin can influence intestinal damage in a pig model  of malnutrition. Food Funct 2016;7:665–78. http://doi.org/10.1039/c5fo01217a
1
Hazard B, Zhang X, Naemeh M, et al. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and  Fermentation Responses in Rats. Crop Sci 2015;55:2813–25. http://doi.org/10.2135/cropsci2015.03.0179
1
Hamilton MK, Boudry G, Lemay DG, et al. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol 2015;308:G840-851. http://doi.org/10.1152/ajpgi.00029.2015
1
Ronveaux CC, Tome D, Raybould HE. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. J Nutr 2015;145:672–80. http://doi.org/10.3945/jn.114.206029
1
de La Serre CB, de Lartigue G, Raybould HE. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiol Behav 2015;139:188–94. http://doi.org/10.1016/j.physbeh.2014.10.032
1
de Lartigue G, Ronveaux CC, Raybould HE. Vagal plasticity the key to obesity. Mol Metab 2014;3:855–6. http://doi.org/10.1016/j.molmet.2014.09.009
1
de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol Metab 2014;3:595–607. http://doi.org/10.1016/j.molmet.2014.06.003
1
Ronveaux CC, de Lartigue G, Raybould HE. Ability of GLP-1 to decrease food intake is dependent on nutritional status. Physiol Behav 2014;135:222–9. http://doi.org/10.1016/j.physbeh.2014.06.015
1
Kilpatrick LA, Coveleskie K, Connolly L, et al. Influence of sucrose ingestion on brainstem and hypothalamic intrinsic oscillations in lean and obese women. Gastroenterology 2014;146:1212–21. http://doi.org/10.1053/j.gastro.2014.01.023
1
Connolly L, Coveleskie K, Kilpatrick LA, et al. Differences in brain responses between lean and obese women to a sweetened drink. Neurogastroenterol Motil 2013;25:579-e460. http://doi.org/10.1111/nmo.12125
1
Raybould HE. The heat is on: does direct application of capsaicin to autonomic nerves produce  a specific deafferentation? J Physiol 2013;591:1405. http://doi.org/10.1113/jphysiol.2013.251868
1
Eisner F, Martin EM, Kuper MA, et al. CCK1-receptor stimulation protects against gut mediator-induced lung damage during endotoxemia. Cell Physiol Biochem 2013;32:1878–90. http://doi.org/10.1159/000356644
1
Chichlowski M, De Lartigue G, German JB, et al. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides  affect intestinal epithelial function. J Pediatr Gastroenterol Nutr 2012;55:321–7. http://doi.org/10.1097/MPG.0b013e31824fb899
1
Lee J, Cummings BP, Martin E, et al. Glucose sensing by gut endocrine cells and activation of the vagal afferent pathway is impaired in a rodent model of type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 2012;302:R657-666. http://doi.org/10.1152/ajpregu.00345.2011
1
Raybould HE. Gut microbiota, epithelial function and derangements in obesity. J Physiol 2012;590:441–6. http://doi.org/10.1113/jphysiol.2011.222133
1
de Lartigue G, Barbier de la Serre C, Espero E, et al. Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats. PLoS One 2012;7:e32967. http://doi.org/10.1371/journal.pone.0032967
1
de Lartigue G, de La Serre CB, Raybould HE. Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav 2011;105:100–5. http://doi.org/10.1016/j.physbeh.2011.02.040
1
Vincent KM, Sharp JW, Raybould HE. Intestinal glucose-induced calcium-calmodulin kinase signaling in the gut-brain axis in awake rats. Neurogastroenterol Motil 2011;23:e282-293. http://doi.org/10.1111/j.1365-2982.2011.01673.x
1
de Lartigue G, Barbier de la Serre C, Espero E, et al. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am J Physiol Endocrinol Metab 2011;301:E187-195. http://doi.org/10.1152/ajpendo.00056.2011
1
Lee J, Martin E, Paulino G, et al. Effect of ghrelin receptor antagonist on meal patterns in cholecystokinin type 1  receptor null mice. Physiol Behav 2011;103:181–7. http://doi.org/10.1016/j.physbeh.2011.01.018
1
Otis JP, Raybould HE, Carey HV. Cholecystokinin activation of central satiety centers changes seasonally in a mammalian hibernator. Gen Comp Endocrinol 2011;171:269–74. http://doi.org/10.1016/j.ygcen.2011.02.024
1
Liou AP, Chavez DI, Espero E, et al. Protein hydrolysate-induced cholecystokinin secretion from enteroendocrine cells  is indirectly mediated by the intestinal oligopeptide transporter PepT1. Am J Physiol Gastrointest Liver Physiol 2011;300:G895-902. http://doi.org/10.1152/ajpgi.00521.2010
1
Eisner F, Jacob P, Frick J-S, et al. Immunonutrition with long-chain fatty acids prevents activation of macrophages in the gut wall. J Gastrointest Surg 2011;15:853–9. http://doi.org/10.1007/s11605-011-1431-z
1
Liou AP, Sei Y, Zhao X, et al. The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells. Am J Physiol Gastrointest Liver Physiol 2011;300:G538-546. http://doi.org/10.1152/ajpgi.00342.2010
1
Garrido D, Kim JH, German JB, et al. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS One 2011;6:e17315. http://doi.org/10.1371/journal.pone.0017315
1
Liou AP, Lu X, Sei Y, et al. The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 2011;140:903–12. http://doi.org/10.1053/j.gastro.2010.10.012
1
de La Serre CB, Ellis CL, Lee J, et al. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 2010;299:G440-448. http://doi.org/10.1152/ajpgi.00098.2010
1
Cummings BP, Strader AD, Stanhope KL, et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology 2010;138:2437–46, 2446.e1. http://doi.org/10.1053/j.gastro.2010.03.005
1
Lo C-M, King A, Samuelson LC, et al. Cholecystokinin knockout mice are resistant to high-fat diet-induced obesity. Gastroenterology 2010;138:1997–2005. http://doi.org/10.1053/j.gastro.2010.01.044
1
Raybould HE. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci 2010;153:41–6. http://doi.org/10.1016/j.autneu.2009.07.007
1
Paulino G, Barbier de la Serre C, Knotts TA, et al. Increased expression of receptors for orexigenic factors in nodose ganglion of diet-induced obese rats. Am J Physiol Endocrinol Metab 2009;296:E898-903. http://doi.org/10.1152/ajpendo.90796.2008
1
Hao S, Dulake M, Espero E, et al. Central Fos expression and conditioned flavor avoidance in rats following intragastric administration of bitter taste receptor ligands. Am J Physiol Regul Integr Comp Physiol 2009;296:R528-536. http://doi.org/10.1152/ajpregu.90423.2008
1
Donovan MJ, Paulino G, Raybould HE. Activation of hindbrain neurons in response to gastrointestinal lipid is attenuated by high fat, high energy diets in mice prone to diet-induced obesity. Brain Res 2009;1248:136–40. http://doi.org/10.1016/j.brainres.2008.10.042